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A simple electrostatic analysis is given of the virtual charge (solvaton) model 
to represent the environment effect on the electronic wave function of  a solute 
immersed in a polarizable surrounding. New features of  this model are found. 
The classical aspects are discussed and secondly the quantal implications are 
considered. A correct Hartree-Fock-like operator is derived which represents 
an electron in a molecular orbital subjected to the average effect of  the other 
electrons and to the reaction field produced by the virtual charges on the 
atomic centers. 

A general formalism based on the preceding model is presented in appendix. 
The final equations have a form similar to Newton's equation to represent a 
solvated electron. Unlike some other theories in this field, there is no cut-off 
involved in the evaluation of  the molecular integrals. 
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1. Introduction 

The theoretical representation of  environmental effects on the electronic structure 
of  solute molecules is receiving an increasing attention [1, 20]. However, this 
representation involves a number of problems to which different answers have 
been given by various authors, Firstly, the correct choice of  the functional to be 
minimized in order to introduce self-consistently the solute-solvent interaction 
has raised some confusion. Secondly, and in relation to the previous one, one has 
to decide how to account for the solvent reorganization or polarization effects. 
While both aspects have been discussed within the basic principles of  quantum 
mechanics and statistics by one of  us [16], the use of  the method based on net 
charges on the atomic centers of a given molecular system and Born's formula for 

0040/5744/78/0048/0075/$02.40 



76 R. Constanciel and O. Tapia 

the solvation energy has led to apparently incorrect treatments. It therefore seems 
worthwhile to further discuss these points. 

A simple classical electrostatic analysis, based on the virtual (polarization) 
charge approximation to represent the solvent polarization leads to the unnoticed 
result that one cannot reproduce simultaneously the solvent potential field acting 
over the solute, which is produced by the virtual charges, and the total electro- 
static energy of the solute-solvent charge system. The latter is the total sum of 
1) the self-energy of the net charge system in vacuum, 2) the interaction potential 
energy between the net charges and the virtual charges, and 3) the self-energy of 
the virtual charge system, which would represent the work necessary to create 
and to assemble the virtual charges. 

At the level of an optimization procedure one can take either the energy of the 
solute in the field of the polarized solvent or the total electrostatic energy of the 
solute-solvent charge system. A decision has to be made between them. These 
points are discussed in what follows. 

Thereafter we examine the transposition of these results in the framework of the 
SCF theory and an expression of the effective Hartree-Fock (HF) operator, which 
takes into account the solvation effects, is derived. 

As the detailed nature of the microscopic model is not relevant to our discussion, 
we restrict ourselves to the one introduced by Klopman [5] and later on im- 
plemented by Germer [12, 13] within the framework of a semi-empirical SCF 
scheme. This model is promising due to the simplicity of the formulas and to the 
fact that ions as well as neutral molecules can be treated on the same basis. 

2. The Virtual Charge Model (Classical Aspects) 

We restrict ourselves to describe those solute-solvent interactions whose effects 
are of electrostatic nature and, therefore, are accounted for by the formula of 
Born [21, 22]. Thus, consider first a singly uniformly charged sphere (0, a) with 
net charge Qo, of center 0 and radius a, immersed in a dielectric continuum of 
relative permitivity e. The solvation energy is simply the difference of the electro- 
static self-energy of that sphere considered respectively in the vacuum (E(I)) and 
in the continuous dielectric (E(e)): 

1 Q2 Qo 2 _ ( l _ e _ l ) Q o  2 
Es~ a 2a = 2a" (1) 

To represent the medium effect upon the sphere one seeks for the reaction field 
potential due to the medium polarization. For the sphere immersed in the di- 
electric the potential of the charge Qo in the medium-is given by 

Ve(e, M)=Qo/ed,  d>a.  (2) 

This potential looks like the one produced by a point charge Qo situated at the 
origin of the sphere (0, a). The reaction field potential of this latter set-up is well 
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known [23] and is given by 

V R = - (1 - e - ' ) Q o / a  (3) 

which is the difference between the potential inside the sphere immersed in the 
dielectric V i(e, O) = Qo/ea and the potential inside the isolated sphere V i(1, 0) = Qo/a. 

One can now reproduce exactly these potentials by the method of virtual charges 
if one replaces the system already considered by an equivalent system formed by a 
conveniently charged sphere in vacuum. Thus, if we consider the potential (2), 
clearly the same potential can be reproduced at the same point in the vacuum 
if we introduce a virtual charge Q distributed on the surface of the sphere; we 
must have 

V(e, M) = Oo 4-Q = Oo (4) 
d ed 

a relation inferring that 

Q = - (1 - e -  1)Q o. (5) 

The potential produced by this virtual charge Q inside the sphere is precisely the 
reaction field (3); and the total potential Vi(e, M) is precisely Qo/ea. In this way, 
the charge Q allows us to represent the environmental effect upon the charge Qo. 
The interaction potential energy between the solute charge distribution (Qo = Q~) 
and the polarisable solvent represented by the virtual charge (Q = Qs) will be 
designated by E~s; it is given by 

E~s=QoVR QoQ (l_e-1)Q2/a. (6) 
a 

Thus, one can write the total energy E(e) of the system as follows: 

E(e)=E~+ Ezs+ E s (7) 

where E~ is the electrostatic energy of the charged sphere in vacuum, Ezs has 
already been defined, and Es is the electrostatic energy spent to polarize the 
solvent when there are no free charges in it. A problem arises now, since Es is the 
energy produced in charging the sphere from 0 up to Q against its reaction field [24] : 

Es= VR(Q') dQ'  = (1 -~-')2Qg/2a (8) 

then E(e)= Qg/2ae 2, and therefore the solvation energy 

E'solv = E(e) - E(1) = - (1 - e- Z)Q2/2a (9) 

differs from Born's expression by a factor of (1 + e- 1). It is interesting to notice 
that within the image approximation to the reaction field, Friedman [25] has 
found that the free energy of solvation of an ion of radius a differs from the Born 
equation by the same factor as found by us. 

One is confronted now with a dilemma. Either one reproduces the potentials 
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according to the electrostatic of a dielectric or one reproduces the total energy of 
the system so as to recover Born's equation for the solvation energy. Clearly, in 
consideration of the medium polarizability, the determination of the equilibrium 
charge distribution will necessarily be achieved by the optimization of the total 
energy. Thus, this later quantity appears as having an essential role and, conse- 
quently, a correct expression for it has to be taken, i.e., an expression which leads 
to Born's formula. 

Therefore, to obtain the correct formula (within this model) of the total energy 
E(e), it is necessary to define the virtual charge as follows 

Q = - (1 - D - ~)Qo (10) 

where D is a function of the dielectric constant, in fact is given by" D = x/~, and 
will be called effective dielectric constant. 

Of course, with this choice of virtual charge the potentials produced by the 
system of charge Qo and Q in vacuum are no longer those produced by Qo in the 
medium of dielectric constant e. The replacement of e by D in the reaction field 
potential leads to a better distinction among the solvents of high dielectric constant. 
It follows now that, if this elementary approach is correct, the solvent effect 
upon the net charges is not directly correlated with the overall solvation effect. 
This is a new feature that seems not to be perceived by other workers. 

An important result comes out of the preceding discussion once an assembly 
{Qoi, Qi} of interacting net and virtual charges is considered. The total electro- 
static energy is given by 

Er QoiQol S" QoiQj ~_�89 QiQj - E z + E z s + E  s (11) 
, (rij+ ai 3ij) 

with obvious notations, For  the case of i=  2, and only when the virtual charge 
Q given by (10) is taken, one recovers from (11) the correct energy formula 

E , -  Q21 Q22 QolQo2 (12) 

of  two ions of radii al and a 2 immersed in a continuum of dielectric constant e 
separated by a distance r12. 

Henceforth, if the virtual charge approach to simulate the polarizable medium 
effect upon a given charge system is going to be consistently used, the potential 
produced by the polarization charge must be given by 

V n = - (1 - 1/w/e)Qo/a (13) 

and the total electrostatic energy will acquire the form (11) which is consistent 
with Born's formulation. 
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3. The Effective Hamiltonian (Quantum Aspects) 

Since the self-consistent field (SCF) calculations involve the optimization of total 
energy functionals [26], the dilemma raised in the preceding section must be 
solved in favor of a correct representation of this energy functional. 

To derive an effec, tive Hamiltonian we have to consider the system formed by 
two interacting subsystems Z and S as a charge subsystem Z (e.g. S) in the field 
of the other S (e.g. Z). Thus, provided the intersystem correlation effects may be 
neglected, the search for the equilibrium charge distribution through the solution 
of the Schr6dinger equation of the whole system, may be replaced [27] by the 
search for the optimal charge distribution of each subsystem through the solution 
of the coupled Schr6dinger equations involving the effective Hamiltonians 

H~"(S): H~ + V~(S) (14) 
and 

n~ff(z~) =Hs+ Vs(S ) (15) 

describing each subsystem in the average Coulomb field of the other. The total 
energy can be expressed in either of two manners 

E=E~+Es(S ) or E=Es+E~(S) (16) 

where 

Es(Z)=Es+Esz and E~(S)=Ez+Esz (17) 

with obvious meaning. 

In the particular case where a given subsystem is fixed all the considerations on E 
can be deduced from the knowledge of the effective energy of the variable sub- 
system only. Clearly, this is not the case as far as selfconsistent treatment of the 
solvation effect is concerned, since we have assumed that the virtual charge 
distribution simulating the solvent reorganization was defined explicitly in terms 
of the real charges and consequently varies with them. In fact, the contribution 
Ess to the effective energy Ez(S ) of the solute subsystem is negative; it characterizes 
the stabilization coming from the appearance of opposite charges in the solvent 
around the solute. But appearance of these charges is energy consuming; this 
destabilization contribution is just given by E s which is a positive term. Neglecting 
this term without further ado may lead to physically senseless results. 

Although these considerations are rather general, and are valid irrespective of 
the actual computational technique that may be employed, they can be used to 
get an effective operator within the framework provided by the preceding virtual 
charge model. In what follows, the CNDO serniempirical scheme [26] is used to 
get a form of the effective Fock-operator associated to a solute molecule S in the 
solvent S. The real charge distribution Q~ is that of the calculated net charges Q 
of the molecule, i.e., the difference between the nuclear (core) charges Z A and the 
electronic ones pA: 

Q~=ZA-PA=QA for allatoms A, (18) 
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the virtual charges simulating the solvent S are according to (10): 

QS= - (1  - D - 1 ) Q  A for all atoms. (19) 

Let us stress the fact that retaining the relation (19) gives us directly the virtual 
charge distribution without performing the optimization of Es(Z) (that is, without 
handling the effective operator H~"(X)). In this way, we do not achieve the 
optimization of the total energy in the more general manner, but we only determine 
its optimal value with a constraint (as we have shown in the first chapter, this 
constraint on the virtual charges assures that they simulate the influence of the 
medium so that the total energy obtained leads us to recover the Born expression). 

Following Jano one may define a virtual charge distribution operator and build 
up the potential that acts over the Z-molecule. An explicit form of the interaction 
operator can be obtained which displays explicitly the dependence on the Z-wave 
function. This is done in the appendix. Here instead the interaction energy E~s is 
immediately written down within the CNDO-approximation (see appendix) 

QAQB TAB (20) 
A B 

where 7~  is a two-electron integral which depends only on the nature of the 
atoms A and B [26]. As is well known from Pople's theory [26] ~.;AB is an average 
electrostatic repulsion between any electron on A and any electron on B. For 
large interatomic distances rA~, 7AB will be approximately equal to rA~, which 
leads (20) back to Exs given by (11). A simple derivation is proposed now which 
takes advantage of the energy expression obtained in the LCAO approximation. 

Therefore, using the definition (18), Exs can be written as a sum of two terms 

E,s= 1- ~ ZAQByA"+ ~,~a 

The first term is the core-solvent interaction; the second one is the electron- 
solvent interaction from which we derive the solvent field one electron operator 

1 1 

By addition of the operator ~(S) to the one-electron operator/~ of the isolated 
molecule, we define the effective core operator/~(S) associated to the solute in 
the field of the solvent 

/~(S) =/~ + ~(S). (23) 

The modification to the Fock operator can be deduced from the preceding ones; 
in regard to the usual definition [26] 

p =/~ + ~ (24) 

where if, is the electron field operator, we obtain for the effective Fock operator 
including the solvent interaction 

F(S) =/~(S) + ~ = l  v + 4(S). (25) 
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The expression of the effective electronic energy e~ff(S) is easily obtained by 
substitution of ~ and P by/~(S) and if(S) in the usual formal expression of the 
electronic energy [26] in the AO basis 

eff( if, "~ 1 ~z ~ , ,  = ~ ~ ~ P~(hu~(S) + Fu~(S)). (26) 
,u 7 

It is easy to verify that the effective total energy is the sum of the just defined 
effective electronic energy and of the core-solvent interaction term 

E y , ( S ) : e ~ f f ( s ) - ( 1 - 1 ) ~ A ~  B / A Q B T A B -  (27) 

Thus, the SCF procedure including solvation effects can be reduced to the standard 
SCF procedure on the isolated molecule by retaining as Fock operator that of 
Eq. (25). However, we would like to emphasize that although the effective and the 
total energy attain a stationary value simultaneously, (i.e., the correct charge 
distribution is obtained either way) the only physically relevant quantity for 
discussing equilibrium and rate constants is the total energy E [28]. It is easy to 
check within this approach that E s = -E~s(1  - D -  1)/2 at selfconsistency, so that 
one has to form this quantity at the end of the selfconsistent field calculation. 

4. Discussion 

The currently used virtual charge model to represent the environmental effect 
upon the electronic properties of molecular systems has been revised. It has 
been shown that if a proper representation of the electrostatic contribution to 
the solvation energy is sought, there is need of an effective dielectric constant in 
the potential function appearing in the Hartree-Fock molecular orbital equations. 
The theory developed here differs from that proposed by Klopman. Klopman's 
theory I-5] made the strong assumption that E s = 0 and therefore obtained 

E =  E~ + E~s = Q~/2a~. (28) 

Since E}= Q~/2a, k follows that 

E}s = - (1 - e.- 1)Q~/2a (29) 

at variance with formula (13), not only with respect to the replacement of the 
dielectric constant, but also in so far as a spurious factor �89 is present in (29). While 
this theoretical approach is physically unsound, it appears to work correctly 
within the first-order perturbation theory used by Klopman [5]; nevertheless, it 
is no longer adequate to provide a meaningful reaction field potential acting on 
the atomic charges. 

It should be noted that within a proper reaction field theory [18], the preceding 
difficulties do not arise. There, the potential and the electrostatic contribution to 
the solvation energy are adequately defined [18]. 

An effective Hamiltonian for the solute has been built up in the appendix. A 
procedure proposed by Jano [4] has been followed. The one-electron solvent 
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field operator ~(S) was derived from it within the CNDO approximate scheme. 
The formalism is general and can be used in ab initio calculations; the integrals 
appearing in Eqs. (A6) and (A14) are the standard integrals in molecular orbital 
calculations. The medium effect is present through the function f(D). It is note- 
worthy that these integrals do not present cut off problems as in some other 
works [2, 9, 14, 15, 17]. The reason is simple, since the system of charges (virtual 
and net) are interacting in vacuum, therefore there is no need of cavities or to use 
non-convergent expansions to represent the coupling between the solute and the 
medium. 

Another procedure can be envisaged to build up an effective Hamiltonian. The 
Eq. (11) can be used to propose the following Hamiltonian: 

electr,  nuclei 
H~ff(S)=H~ - ~ ~ QJr,s (30) 

i s 

where we have dropped the term a~ 6is in the denominator ofE~s (cf. Eq. (11)). The 
Hamiltonian Hs is given by 

(1V nuclei Zs 1 ,--, 1 ) 
H~= ~ 2+ ~ __+~ 2. �9 (31) 

�9 r is  j 6 i  ~ i j  

The effective Hamiltonian H~ff(S) resembles the one given by Germer. However, it 
differs in Hzs by a factor �89 which is spurious in that work, and now in the new 
form given to the virtual charge Qs. This Hamiltonian is not amenable to a simple 
form from where the variational principle can be applied. Instead, one may 
consider that the actual virtual charges are known. Therefore once the variational 
principle is applied to obtain a stationary value of (~blH~f(S)t~k) subjected to the 
normalization constraint ( 0 [  0)=constant ,  these charges are not varied, and 
the following Hartree-Fock operator is obtained 

h + ~ (2J j -  Kj) - Q~ j=t ~ ~b,(1)=~u~b,(1 ). (32) 

This equation is valid only if the exact molecular orbitals are used. Since we do 
not have such orbitals, a self-consistent procedure involving also the virtual 
charges has to be used. This makes a difference with Germer's treatment. To end 
up these considerations one can easily see that in the CNDO approximation used 
here the one-electron solvent field operator appearing in (32) reduces to the one 
already obtained by us in Eq. (22). At this level of approximation these treatments 
are equivalent. 

Recently a new application of Klopman and Germer's procedure came to our 
attention: a quantum chemical study of radical ions and molecules incorporating 
solvent effect [29] through the solvation model. We would like to emphasize that, 
while the theory behind this model is not well founded, the numerical results 
thereby obtained do reflect the solvent polarization effects upon the electronic 
wave function. In fact, one can assume that an "effective" dielectric constant e' 
has been taken up, i.e., e '= e/(2-e) so that the Hartree-Fock-like equations do 
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represent the solvent effect as in Eq. (32). The meaning of the total energy calculated 
with this wave function is of course doubtful. 

Numerical comparisons between the SCRF theory and the virtual charge method 
discussed here have been done [30]. Details of them will be published elsewhere. 
As it could be expected both methods taken at the same approximate level, lead 
to similar results. 

Acknowledgement. One of us, R. C., is very much indebted to Prof. H. Jaff6 for helpful and encouraging 
discussions. 

Appendix 
The approach proposed by Jano [4] is used to state an explicit form of  the effective 
Hamiltonian within the framework of the virtual charge model of the solvent 
effect. 

Consider the virtual charge density operator defined by 

where n is the number of electrons; 3(R'- R) is Dirac's delta distribution; the sum 
over A represents a sum over the atoms of the molecule; a n d f ( D )  -- - (1 - D  - 1). 
The operator t3v is a simple n-electron operator. 

For  a one-determinant wave function ~9(1 . . . .  , n) build up of the n/2 molecular 
orbitals q5 i (1) defining the lowest-energy configuration, the expectation value of 
~v(R') represents the virtual charge density at a given point R':  

o c t  

(O]#v(R')l~/) = f ( D )  ~ Z A 3 ( R ' -  RA)-- 2 ~ ~bs + (R')•s(R') (A2) 
A j = i  

where of course the following equality holds 

n oct 

(~kl~ 6(R'- ri)l$ ) = 2 ~, figS. (R')$j(R'). (A3) 
i=l j=i 

The electrostatic potential produced inside the molecular volume, V, is given by 

V(R)-- fdR' <e'IP~ ]R_R, I (a4) 

This is the reaction field potential acting over the molecular system. The inter- 
action Hamiltonian can be written as follows: 

V~(S)= Z'ZBV(RB)-- ~ V(r,) (A5) 
B i = 1  

where the prime over the summation indicates that the self-energy term corre- 
sponding to the core charges is to be given the form Z2/aB. It is then clear that the 
effective Hamiltonian Hz + Hss depends upon the wave function of the solute. A 
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self-consistent procedure will be implied in its solution independently of the 
method used to calculate the MO's. 

Proceeding now to calculate Ezs in the LCAO approximation one gets 

(OlVx(S)]~b)=f(D) [RA--Ru+aA JAB[ ~a ~ ~ ZBP~ J~z*(r)zv(r)lRu-r[ dr 

- Z Z ZAPu~ ~- Z Z P.~ Pzo (#v 12p) (A6) 
3 

where 

f z*(r);(~(r-)~(r')Z~ dr dr' (A7) 
J k-r'l 

and 

P.~=2 Z * (A8) C laiC ~i 
i=1  

where {c,~} are the atomic orbital coefficients of the i'th MO; P,~ is the charge- 
bond order matrix. 

The expression (A6) is general in respect to the integrals appearing in it. Applying 
now the approximate scheme of Pople et al., for the bielectronic integrals, and 
approximating the penetration integrals as follows 

f ZA(r)ZA(r) dr = •AB (A9) k-R.I 
together with 

ZAZB/]RA--RB+aA 6ABI = ~ ZAZBYAB (A10) 
A,B A,B 

one gets Eq. (20) of the text. 

It is interesting to check now the derivation given in the text of the one-electron 
solvent field operator ~(S). To proceed we use the energy functional already 
considered by one of us [16, 28]: 

J(l#) = <~ IH~eff I~//) -4-,~,(1# [ ~ )  - ~-(~1V~(S)[I#> (A11) 

where the last term represents the solvent polarization energy. After some simple 
manipulations one gets for the first variation of (A11) 

6J = <6~bl(H ~- ~ V(r~)+2)l~'> =0  (A12) 
i 

Thus for a 6~ given by the determinant ~i' where the orbital ~b~ has been replaced 
by an orbital ~, belonging to the orthogonaI complement of the fundamental 
configuration, one easily gets 
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which is the new Har t ree -Fock  operator  from where the MO's  and energies have 
to be obtained. By the way, this equation may be used in ab initio as well as semi- 
empirical procedures. 

We have now to calculate the matrix elements of  V(r): 

C~*(r)Xv(r) , . . f ff(r)~J (r)Z~(r) dr] 

which within the approximate C N D O  scheme used here leads only to diagonal 
matrix elements: 

_ V; u-A _- - f (D)  Z (ZB-- PR)?AS (A15) 
B 

where pB =~u~B P,u. The minus sign cancels the sign insider(D) and one recovers 
~ ( S )  since the right hand side of  (A15) does not depend on the orbital index but 
only on the type of atom. 

Finally, we would like to emphasize that within the exact reaction field theory 
-�89 represents the work necessary to polarize the environment, 
i.e., Es. On the contrary, in the method described in the main text, the solvent 
polarization is given by a set of  interacting virtual charges where self-interaction 
is included. Now, due to the fact that the total energy is constrained to adopt a 
form in accord with Born's  formula,  it is no longer possible to derive the solvent 
polarization energy from the reaction field potential. On the other hand, the 
form of  the functional (A11) is imposed by quite general considerations associated 
to the application of the variational principle to functionals containing non- 
linear Hamiltonians [28]. Thus, 2 has only the meaning of  total energy when the 
polarization energy is derived f rom a reaction field potential. Otherwise, one has 
to be very careful to calculate the adequate total energy of the system which is 
compatible with the chosen model representing the surrounding medium polar- 
ization. 
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